skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kong, Weimeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Anthropogenic ammonia (NH3) emissions have significantly increased in recent decades due to enhanced agricultural activities, contributing to global air pollution. While the effects of NH3on surface air quality are well documented, its influence on particle dynamics in the upper troposphere-lower stratosphere (UTLS) and related aerosol impacts remain unquantified. NH3reaches the UTLS through convective transport and can enhance new particle formation (NPF). This modeling study evaluates the global impact of anthropogenic NH3on UTLS particle formation and quantifies its effects on aerosol loading and cloud condensation nuclei (CCN) abundance. We use the EMAC Earth system model, incorporating multicomponent NPF parameterizations from the CERN CLOUD experiment. Our simulations reveal that convective transport increases NH3-driven NPF in the UTLS by one to three orders of magnitude compared to a baseline scenario without anthropogenic NH3, causing a doubling of aerosol numbers over high-emission regions. These aerosol changes induce a 2.5-fold increase in upper tropospheric CCN concentrations. Anthropogenic NH3emissions increase the relative contribution of water-soluble inorganic ions to the UTLS aerosol optical depth (AOD) by 20% and increase total column AOD by up to 80%. In simulations without anthropogenic NH3, UTLS aerosol composition is dominated by sulfate and organic species, with a marked reduction in ammonium nitrate and aerosol water content. This results in a decline of aerosol mass concentration by up to 50%. These findings underscore the profound global influence of anthropogenic NH3emissions on UTLS particle formation, AOD, and CCN production, with important implications for cloud formation and climate. 
    more » « less
    Free, publicly-accessible full text available November 4, 2026
  2. Abstract During summer, ammonia emissions in Southeast Asia influence air pollution and cloud formation. Convective transport by the South Asian monsoon carries these pollutant air masses into the upper troposphere and lower stratosphere (UTLS), where they accumulate under anticyclonic flow conditions. This air mass accumulation is thought to contribute to particle formation and the development of the Asian Tropopause Aerosol Layer (ATAL). Despite the known influence of ammonia and particulate ammonium on air pollution, a comprehensive understanding of the ATAL is lacking. In this modelling study, the influence of ammonia on particle formation is assessed with emphasis on the ATAL. We use the EMAC chemistry-climate model, incorporating new particle formation parameterisations derived from experiments at the CERN CLOUD chamber. Our diurnal cycle analysis confirms that new particle formation mainly occurs during daylight, with a 10-fold enhancement in rate. This increase is prominent in the South Asian monsoon UTLS, where deep convection introduces high ammonia levels from the boundary layer, compared to a baseline scenario without ammonia. Our model simulations reveal that this ammonia-driven particle formation and growth contributes to an increase of up to 80% in cloud condensation nuclei (CCN) concentrations at cloud-forming heights in the South Asian monsoon region. We find that ammonia profoundly influences the aerosol mass and composition in the ATAL through particle growth, as indicated by an order of magnitude increase in nitrate levels linked to ammonia emissions. However, the effect of ammonia-driven new particle formation on aerosol mass in the ATAL is relatively small. Ammonia emissions enhance the regional aerosol optical depth (AOD) for shortwave solar radiation by up to 70%. We conclude that ammonia has a pronounced effect on the ATAL development, composition, the regional AOD, and CCN concentrations. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Ammonium nitrate will condense to tiny particles under sub-zero conditions, activating well below 10 nm. 
    more » « less
  4. Inhomogeneities in temperature and ammonia concentrations can cause rapid growth of nanoparticles in polluted environments. 
    more » « less
  5. Abstract. Particle size measurement in the low nanometer regime is of great importance to the study of cloud condensation nuclei formation and to better understand aerosol–cloud interactions. Here we present the design, modeling, and experimental characterization of the nano-scanning electrical mobility spectrometer (nSEMS), a recently developed instrument that probes particle physical properties in the 1.5–25 nm range. The nSEMS consists of a novel differential mobility analyzer and a two-stage condensation particle counter (CPC). The mobility analyzer, a radial opposed-migration ion and aerosol classifier (ROMIAC), can classify nanometer-sized particles with minimal degradation of its resolution and diffusional losses. The ROMIAC operates on a dual high-voltage supply with fast polarity-switching capability to minimize sensitivity to variations in the chemical nature of the ions used to charge the aerosol. Particles transmitted through the mobility analyzer are measured using a two-stage CPC. They are first activated in a fast-mixing diethylene glycol (DEG) stage before being counted by a second detection stage, an ADI MAGIC™ water-based CPC. The transfer function of the integrated instrument is derived from both finite-element modeling and experimental characterization. The nSEMS performance has been evaluated during measurement of transient nucleation and growth events in the CLOUD atmospheric chamber at CERN. We show that the nSEMS can provide high-time- and size-resolution measurement of nanoparticles and can capture the critical aerosol dynamics of newly formed atmospheric particles. Using a soft x-ray bipolar ion source in a compact housing designed to optimize both nanoparticle charging and transmission efficiency as a charge conditioner, the nSEMS has enabled measurement of the contributions of both neutral and ion-mediated nucleation to new particle formation. 
    more » « less
  6. The main nucleating vapor in the atmosphere is thought to be sulfuric acid (H2SO4), stabilized by ammonia (NH3). However, in marine and polar regions, NH3is generally low, and H2SO4is frequently found together with iodine oxoacids [HIOx, i.e., iodic acid (HIO3) and iodous acid (HIO2)]. In experiments performed with the CERN CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we investigated the interplay of H2SO4and HIOxduring atmospheric particle nucleation. We found that HIOxgreatly enhances H2SO4(-NH3) nucleation through two different interactions. First, HIO3strongly binds with H2SO4in charged clusters so they drive particle nucleation synergistically. Second, HIO2substitutes for NH3, forming strongly bound H2SO4-HIO2acid-base pairs in molecular clusters. Global observations imply that HIOxis enhancing H2SO4(-NH3) nucleation rates 10- to 10,000-fold in marine and polar regions. 
    more » « less
  7. Intense new particle formation events are regularly observed under highly polluted conditions, despite the high loss rates of nucleated clusters. Higher than expected cluster survival probability implies either ineffective scavenging by pre-existing particles or missing growth mechanisms. Here we present experiments performed in the CLOUD chamber at CERN showing particle formation from a mixture of anthropogenic vapours, under condensation sinks typical of haze conditions, up to 0.1 s −1 . We find that new particle formation rates substantially decrease at higher concentrations of pre-existing particles, demonstrating experimentally for the first time that molecular clusters are efficiently scavenged by larger sized particles. Additionally, we demonstrate that in the presence of supersaturated gas-phase nitric acid (HNO 3 ) and ammonia (NH 3 ), freshly nucleated particles can grow extremely rapidly, maintaining a high particle number concentration, even in the presence of a high condensation sink. Such high growth rates may explain the high survival probability of freshly formed particles under haze conditions. We identify under what typical urban conditions HNO 3 and NH 3 can be expected to contribute to particle survival during haze. 
    more » « less
  8. Abstract. Biogenic organic precursors play an important role inatmospheric new particle formation (NPF). One of the major precursor speciesis α-pinene, which upon oxidation can form a suite of productscovering a wide range of volatilities. Highly oxygenated organic molecules(HOMs) comprise a fraction of the oxidation products formed. While it isknown that HOMs contribute to secondary organic aerosol (SOA) formation,including NPF, they have not been well studied in newly formed particles dueto their very low mass concentrations. Here we present gas- and particle-phase chemical composition data from experimental studies of α-pinene oxidation, including in the presence of isoprene, at temperatures(−50 and −30 ∘C) and relativehumidities (20 % and 60 %) relevant in the upper free troposphere. Themeasurements took place at the CERN Cosmics Leaving Outdoor Droplets (CLOUD)chamber. The particle chemical composition was analyzed by a thermaldesorption differential mobility analyzer (TD-DMA) coupled to a nitratechemical ionization–atmospheric pressure interface–time-of-flight(CI-APi-TOF) mass spectrometer. CI-APi-TOF was used for particle- and gas-phase measurements, applying the same ionization and detection scheme. Ourmeasurements revealed the presence of C8−10 monomers and C18−20dimers as the major compounds in the particles (diameter up to∼ 100 nm). Particularly, for the system with isoprene added,C5 (C5H10O5−7) and C15 compounds(C15H24O5−10) were detected. This observation is consistentwith the previously observed formation of such compounds in the gas phase. However, although the C5 and C15 compounds do not easily nucleate,our measurements indicate that they can still contribute to the particlegrowth at free tropospheric conditions. For the experiments reported here,most likely isoprene oxidation products enhance the growth of particleslarger than 15 nm. Additionally, we report on the nucleation rates measuredat 1.7 nm (J1.7 nm) and compared with previous studies, we found lowerJ1.7 nm values, very likely due to the higher α-pinene andozone mixing ratios used in the present study. 
    more » « less
  9. null (Ed.)
    Iodic acid (HIO 3 ) is known to form aerosol particles in coastal marine regions, but predicted nucleation and growth rates are lacking. Using the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber, we find that the nucleation rates of HIO 3 particles are rapid, even exceeding sulfuric acid–ammonia rates under similar conditions. We also find that ion-induced nucleation involves IO 3 − and the sequential addition of HIO 3 and that it proceeds at the kinetic limit below +10°C. In contrast, neutral nucleation involves the repeated sequential addition of iodous acid (HIO 2 ) followed by HIO 3 , showing that HIO 2 plays a key stabilizing role. Freshly formed particles are composed almost entirely of HIO 3 , which drives rapid particle growth at the kinetic limit. Our measurements indicate that iodine oxoacid particle formation can compete with sulfuric acid in pristine regions of the atmosphere. 
    more » « less
  10. Abstract. In the present-day atmosphere, sulfuric acid is the mostimportant vapour for aerosol particle formation and initial growth. However,the growth rates of nanoparticles (<10 nm) from sulfuric acidremain poorly measured. Therefore, the effect of stabilizing bases, thecontribution of ions and the impact of attractive forces on molecularcollisions are under debate. Here, we present precise growth ratemeasurements of uncharged sulfuric acid particles from 1.8 to 10 nm, performedunder atmospheric conditions in the CERN (EuropeanOrganization for Nuclear Research) CLOUD chamber. Our results showthat the evaporation of sulfuric acid particles above 2 nm is negligible,and growth proceeds kinetically even at low ammonia concentrations. Theexperimental growth rates exceed the hard-sphere kinetic limit for thecondensation of sulfuric acid. We demonstrate that this results fromvan der Waals forces between the vapour molecules and particles anddisentangle it from charge–dipole interactions. The magnitude of theenhancement depends on the assumed particle hydration and collisionkinetics but is increasingly important at smaller sizes, resulting in asteep rise in the observed growth rates with decreasing size. Including theexperimental results in a global model, we find that the enhanced growth rate ofsulfuric acid particles increases the predicted particle number concentrationsin the upper free troposphere by more than 50 %. 
    more » « less